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A heterodyne light-scattering (LS) experiment that directly probes thermal fluctuations of the funda-
mental (lowest-order) bend director mode in homeotropic geometry, and a high-resolution
Fréedericksz-transition (FT) experiment which excites the corresponding static mode magnetically were
performed just above nematic—smetic- 4 criticality on the nonpolar wide-nematic-range material dihex-
ylazoxybenzene  over the reduced temperature ranges 3X1077<f<2.0X1073 and
2.7X107°<¢<2.0X 1072, respectively. It is found that over the nearly five decades of reduced temper-
ature covered by these experiments, the enhancement of the bend elastic constant, K;;, obeys a simple
power law with a critical exponent p;=0.825+0.008 (FT), p;=0.815+0.03 (LS); the error estimates in-
clude variations of p; upon extensive range shrinking and gap expansion of the data sets. These studies
cover a wider range of reduced temperature and extend two decades or more closer to the critical point
than previous studies. Over the nearly five decades of reduced temperature covered by these experi-
ments the bend constant K55 increases by nearly four orders of magnitude to 5X107% dyn corresponding
to a longitudinal correlation length of & =7.9r "% A (~200 um at t=3X10"7). The measurement of
correlation lengths of this magnitude may be unprecedented in the study of critical phenomena. In spite
of accessing the regime where £ is comparable with the thickness of our films, ~200 wm, finite-size and
surface effects are not observed. We also report the results of the above heterodyne experiment per-
formed on another nonpolar material, hexyloxynonylbenzoate (609), over a similar reduced-temperature
range. This experiment yielded the same critical exponent within experimental uncertainty,
p3=0.8410.03, contrary to previously reported Fréedericksz-transition measurements which exhibited a
crossover from ~0.84 to 0.67 on range shrinking and were well represented over the entire experimental
range of reduced temperature by a power-law term with p;=0.6710.02 augmented by an anomalously
large negative correction to scaling term. This discrepancy is discussed briefly in the context of surface
phenomena and is currently under study. We compare our results with theoretical predictions about
nematic-smectic- 4 criticality and with the director normal-mode spectrum which we derive from
linearized Erickson-Leslie-Parodi theory including the effects of finite-director anchoring and surface
dissipation.
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Dynamics of the lowest-order bend-twist director mode near nematic—smectic- 4 criticality

I. INTRODUCTION

After two decades of theoretical and experimental
effort the nematic—smectic- 4 (N-Sm- A4) phase transition
remains a central unsolved problem of equilibrium statis-
tical mechanics and eludes definitive experimental char-
acterization. This is not to disclaim any success in under-
standing the problem; the predicted [1] Landau-Peierls
instability of the smectic- 4 phase has been found experi-
mentally [2] and the predicted thermal [3] and elastic
constant [4] critical behavior is qualitatively correct.
However, the critical exponents have been found not to
be universal, although critical-to-tricritical crossover
[5(a)] is a well-known complication and other effects such
as strong but nondivergent enhancement of the splay
elastic constant of weakly polar mesogens may also nar-
row the asymptotic regime [5(b)]. Therefore it is crucial,
in our opinion, to probe critical fluctuations as close to
the transition as possible.

In this article we present light-scattering and
Fréedericksz-transition measurements of the bend elastic
constant K33, which collectively span nearly five decades
of reduced temperature, 3X 1077 <t <2X 1072, and ex-
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tend two decades closer to the transition than previous
measurements of K 3;.

The article is organized as follows. In Sec. II we derive
the small-amplitude director normal-mode spectrum of a
homeotropically aligned nematic from linearized
Erickson-Leslie-Parodi hydrodynamic theory [6] includ-
ing (1) a magnetic field perpendicular to the undistorted
director, 10, i.e., the bend Fréedericksz-transition
geometry, (2) finite-director anchoring at the boundaries,
and (3) surface dissipation effects. We find that the
normal-mode spectrum has discrete wave-vector com-
ponents parallel to i which depend sensitively on the an-
choring strength, the magnetic field, and bulk and surface
coupling between the director field and the center of mass
velocity field. In Sec. III we describe the bend
Fréedericksz-transition and light-scattering experimental
geometries and introduce the heterodyne correlation
function for scattering from the fundamental director
mode, the pure bend mode of lowest-allowed wave vector,
i.e., the mode that is softened by the magnetic field at the
Fréedericksz threshold. In Sec. IV we present our
Fréedericksz-transition and light-scattering data, and
derive from them the critical exponents p; for the materi-
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als studied. We also discuss and summarize our results in
the context of current theory and of other experiments.

II. DIRECTOR DYNAMICS:
HOMEOTROPIC ALIGNMENT

The geometry of the normal modes of interest in our
experiments is shown in Fig. 1. The small-amplitude
director and velocity fields are

fi=in, (y,2)+k=10(y,2)+k 1
and
v=iv(y,z)=1u(y,z) . @)

The fundamental assumptions about the dynamics of
these fields are broken uniaxial symmetry, incompressibil-
ity, and negligible translational and rotational accelera-
tion. The last two collectively assert that the nematic
liquid crystal is a thoroughly overdamped system. All as-
sumptions are supported by a variety of experimental re-
sults. The Erickson-Leslie-Parodi equations of motion
for the mode-2 [7] (bend-twist) geometry arise directly
from the vanishing of the gradient of the stress tensor
and of the torque density; they are

Nalhyy +1cty, +0,6,=0, (3)
K0, +K336,, +x,H*0—7,6—au,=0, (4)

where u,, =d’u /dy%, 6=00/0t, etc. The elasticity and
viscosity coefficients are consistent with common nota-
tion; a, is the Leslie [6] viscositylike coefficient coupling
director and center of mass motion and 7,,7, are
Miesowicz viscosities [8]. Note that all spatial variations
are in the y-z plane, @i is in the x-z plane, and H=iH,
therefore we are considering only the mode-2 fluctuations
maximally softened by the magnetic field.

Normal Mode Geometry

r z
A
n,, r n(y,2)
!
i
i vy
L
+d/2 L
1
0(y,z) |
:'
O |
T'r Ny X
-d/2

FIG. 1. Illustration of the coordinate system chosen for the
analysis of the bend-twist normal-mode spectrum.
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The question of boundary conditions is somewhat sub-
tle. First we assume there is no flow at the boundaries,
i.e.,

u(y,=d/2)=0 (5)

and secondly that dissipation at the boundaries is finite as
a result of finite-director anchoring; thus torque balance
at the boundaries (z ==xd /2) requires that

v.0,+d /2)+a,u,(y,+d /2)
+K4,0,(y,td /2)+ W,0(y,+d /2)=0, (6)

where y,, and «,, are surface dissipation coefficients
analogous to y; and a,, respectively, but with units
differing by a factor of length, and W is the anchoring
energy coefficient. Thus director torques at the boundary
in this model come from pure rotational friction (y
term), coupling to shear flow (a,; term), transmitted bend
torque (K ;3 term), and surface reactive forces (W, term).
We see that three surface-related coefficients are needed
to describe the mode-2 director dynamics of this confined
nematic liquid crystal, two of which (¥, and a,,) we be-
lieve have not appeared in the literature. We have no a
priori knowledge about the magnitude of the surface-
dissipation coefficients but return to them in Sec. IV. If
there were slip flow at the boundaries [u(+d /2)#0] Eq.
(5) would be replaced by 7.0,u(y,*td/2)
+a,0(y,+d /2)£B,u(y,+d /2)=0 leading to yet another
surface friction coefficient, B,. Equations (5) and (6)
reduce to previously assumed boundary conditions [9]
when surface dissipation is ignored.
Equations (3) and (4) have solutions of the form

0(y,z,6)=0(z)e e/, (7)
u(y,z,t)=u(z)eiqyye_’/7, (8)

which, upon substituting into Egs. (3) and (4) yield

nu'(z)—n,q0u(z)—(ay/7)6'(2)=0, 9
K330"(z)—(Kzzqyz—yl/'r—)(aHz)B(z)—azu’(z)=0 .

(10)

It is convenient to introduce the following definitions:

p=mnz/d , (11a)
flp)=6(z), (11v)
g(p)=(ma,ry/vd)ul(z) , (11¢)
0=y /Ks3(m/d)?, (11d)
a=(n,/7.p%, (11e)
p=gq,d/m, (11f)
b=(ad/ym)—> (11g)
h =x,H*/Ky(w/d) , (11h)

k,=K» /K3, (11i)
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cEIT(l—kzp2+h2 : (1))
Then Egs. (9) and (10) become, respectively,

g"(p)—ag(p)—bf'(p)=0 (12)
and

[ (p)tcflp)—g'(p)=0 (13)
or more conveniently

f'""+(c—a—b)f"—acf=0 (14a)
and

g=a l[f"+(c—=b)f"]. (14b)

The characteristic polynomial of Eq. (14a),

D*—(a+b—c)D?*—ac=0, (15)
has the four roots
212D=+{a+b—ct[(a+b—c)*+4ac]'/?}'/?. (16)

Clearly if ¢ >0 (see below) two roots are real (+*R) and
two are imaginary (£7) and f(p) is of the form

flp)=A'e*P+B'e *P+C'e+D'e 1 (17

For g and f to be real we must have C'=D’ (real) or
'=—D'’ (imaginary) and 4’ and B’ must be real. Sym-
metry, or antisymmetry, about p=0 then requires

fe(p)= A cosh(kp)—+ B cos(gp) (18)
or
Sfolp)=C sinh(kp)+ D sin(gp) , (19)

which describe even (E) and odd (O) director normal
modes, respectively. The symmetry of the velocity field is
opposite that of the director field as seen in Eq. (14b).

The dispersion relation analogous to that of the bulk
nematic liquid crystal is then

(z2+k,pr—h?)

T T iy 4 a) 20
where z can be g or ik and

k*—g*=a+b—c . (21)
With Egs. (20) and (11j) we may test ¢ >0,

2

c=;:q{(—l_—x)[q2+a+x(k2p2—h2)] , (22)
where

x=a3/ym, - (23)

Now 0=x <1 is required for positive-entropy production
and h%<gq? is required for stability against a bend
Fréedericksz distortion. Thus ¢ >0 is always true and
our analysis above is valid for all allowed values of the
physical parameters. An implication of this is that in
semi-infinite geometry a homeotropically aligned nematic
liquid crystal, unlike the case of homogeneous alignment,

exhibits no surface modes although there may and, ex-
cept for p=0, will be deviations from bulk sinusoidal
behavior near the surface, with k, the inverse decay
length, given by Eq. (21). A complete treatment of both
the even and odd modes under various assumptions about
coefficients in the boundary conditions will be presented
elsewhere [10]. Here our central interest is in the lowest-
order even mode which we have studied by both light
scattering and Fréedericksz transition.

The effect of the boundary conditions [Egs. (5) and (6)]
on the even modes is most easily discussed by rewriting
Eq. (6) making use of Egs. (11),

(Wo—v1s /T (X7 /2)+(ay v /a,70)g (£ /2)

We introduce the length scale /,

1=y /Y1 (25a)
define
vEa, /a,l , (25b)

and eliminate the g’'(*m/2) term using Eq. (13) to get

.
1—d,d, 7°—cv fltm/2)+vd,d, f"(£7/2)
+d,f(+7/2)=0, (26)
where
_K337T
de= 27)

is the extrapolation length (K;;/W,) in units of d /m,
and

d,=lr/d (28)

is the new length scale in the same units. c is given in Eq.
(11j) with the aid of Egs. (20), (11d)-(11f), (11h), and
(11i). For even modes Eq. (26) becomes

)
——cv
.

‘l—dedn felm/2) +vd,d, fi(m/2)

+d, fr(m/2)=0 (29)
and substituting Eq. (18) into Eq. (29) gives

u(q)—u(ik)=0 (30)
and
A/B=—v(q)/v(ik), (31)
where
2
u(z)Ea+Z cot %z

X {1—d,d,[1—t(z)(1—)

+v(k,p?—h?+z%)]} —d,z? (32)
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and

mZ

v(z)=zsin >

/(a +22) . (33)

Equations (20), (21), (30), and (31) along with the
definitions of Egs. (11a)-(11j), (25a), (25b), (27), (28), (32),
and (33) are the central results needed to unravel the
even-mode bend-twist fluctuation spectrum of a homeo-
tropically aligned nematic. The material parameters
entering these equations are Ki3, K5, Wy, Xoo V1o L ¥,
N4 /N> and a3/7 7.

Barring some unexpectedly strong mechanism for sur-
face dissipation we will assume that / is approximately
equal to the molecular length and v~ 1. Since there are
neither measurements of surface dissipation nor theoreti-
cal estimates of it, the above assumptions about it are the
only currently reasonable ones. With these assumptions
Eqgs. (30) and (32) are replaced by

u(q)—u,(ik)=0 (34)
and
2
“1(Z)=M cot | =
2
X[1—d,d,(z2+k,p*—h?)]—d,z* . (35)

In our experimental geometry p ~0. In this limit Eq.
(34) becomes

[1—d,d, (g*—h*)]cot TL

2
(g>—h*)(1+d,d,h?)
—dq+2mx 4 2 7 T4 RE)
q q°—xh

Now with / approximately equal to the molecular length
(2.5X1077 cm) and taking a realistic value for W,
(~0.05 erg/cm?) and K5 (~107° dyn) and d =200 um
we have d,d, ~3X1077<<1 which means that surface
dissipation is unimportant under the above assumptions.
Thus Eq. (36) becomes

q2__h2
qZ_th

ﬂ=deq+—2ﬂ-x

t
002 q

, (37

which reduces, as required, to the Rapini-Papoular [11]
form at the Fréedericksz transition (h?=g?). The
lowest-g branch solution of cotwq /2=d,q is relevant to
our Fréedericksz-transition experiments whereas Eq. (37)
with h%2=0, again the lowest branch of cotmg /2,

mq _ 277X
t—>-=d,g+—, 38
cot— .q p (38)

is relevant to our light-scattering experiments. 27x /q
represents the role played by dissipation in determining
the normal-mode fluctuation spectrum. x =a3/y,7., Eq.
(23), is a measure of the coupling between shear flow and
director rotation.

Eidner et al. [12] have studied the lowest even-order
normal mode (the fundamental mode) in the presence of a
magnetic field (5% <g?) using the same material and the
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same heterodyne experiment as the work reported here.
They found that ¢(q ), the reduced decay rate [Eq. (20)] of
this mode, decreases linearly toward zero, plotted against
h%, over the entire range of the experiment
(0=h?<0.949%). The experiment was limited near
h2=g? by excessively long decay times. Such linearity of
t(q) vs h? can only occur when the 27x /g term in Eq.
(38) is mnegligible; then the light-scattering and
Fréedericksz-transition data may both be analyzed with
the x =0 version of Eq. (38); namely,

9 _
2

Thus, after all of the possibilities for deviant behavior
presented by bulk and surface dissipation, the fundamen-
tal mode of this material, with the surface treatment
used, behaves in the simplest way, i.e., according to the
predictions of the static theory. Furthermore, it is
demonstrated below that surface dissipation cannot enter
because surface anchoring is always strong for our experi-
ments; i.e., d, ~0.

cot d.q . (39)

III. EXPERIMENT

A. Heterodyne light-scattering experiments

The geometry for this experiment is shown in Fig. 2; a
discussion of it is given by Eidner et al. [12]. Light scat-
tered by a pure bend mode exits the sample parallel to
and negligibly displaced from the transmitted laser beam,
independent of the angle of incidence; hence a homodyne
experiment is impossible with real polarizers but the
geometry is ideal for a heterodyne experiment.

The heterodyne autocorrelation function of interest
here for photon arrivals at the photomultiplier tube
(PMT) is

2F(A){n,) Ry

= — 2
C(t)~<n(0)n(t)) <nLO> 1+ <nL0>

(40)

where n(t) is the number of photons counted in a fixed
time interval A¢( <<7) centered at ¢ and includes both
local-oscillator (nq) and scattered-photon (#n,) contribu-
tions. F( A) is a geometrical factor ranging from zero to
one that measures the statistical coherence of the scat-
tered light over the exposed area of the photocathode.
F(A) and the heterodyne efficiency should be near one
for our geometry. Equation (40) leaves out the homodyne
part of the autocorrelation function because in our exper-
iments {(n,) <<{n.o) throughout the range of reduced
temperature probed.

Figures 3 and 4 show two experimentally measured
correlation functions; Fig. 3 was taken very near the tran-
sition temperature, log;ot = —6.35, and Fig. 4 well above
it, log;ot = —4.01. The deviations from fitting these data
to Eq. (40) are shown in the inset.

As can be seen in these figures the fits are excellent; the
range of relaxation times encountered in these experi-
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Heterodyne Experiment
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FIG. 2. Geometry of the heterodyne light-scattering experiment that detects the lowest even order normal mode (see text). a is the
external incident angle used in calculating q°® using Eq. (41a); see the scattering diagram in the inset for the meaning of q°*. i and f
are the incident and scattered polarizations, respectively, and the scattering plane is also the plane of the rest of the figure.

ments is ~200 msec to 10 sec. The large magnitude of
these relaxation times reflects the fact that we are observ-
ing very low-angle scattering. The components of wave-
vector transfer parallel and perpendicular to the undis-
torted director are

opt

q°"'=gq|

nO . .
—(n2— sina)!/?—(n2— sin’a)
e

172 (41a)

(c-C M)AC_](%)

N

[C(t)-21917.5](arb.units)

t(sec )

FIG. 3. Measured correlation function for log,ot = —6.35.
The inset is the deviation of the measured correlation function
from the best fit to Eq. (40). The deviation is in units of the am-
plitude of the decaying part, i.e., C(0)-C( ), and is expressed
in percent. The graph represents 600 averages of a 1000 chan-
nel correlation function at 3 msec/channel.

and

q*' =0, (41b)
where k,=2mw/A, (A, is the vacuum wavelength of
He-Ne light, 6328 A), n, and n, are the extraordinary
and ordinary indices of refraction of the nematic di-
hexylazoxybenzene (DHAOB), and «a is the external in-
cident angle of the laser beam relative to the film normal.
For both of the experiments reported here a is so small
that qﬁpt <mw/d. Therefore we are probing only the

24 T R T T
®
T 1
— 5 o
L g g 1
c )
2 0 5 10 15 20 25
_d t(sec )
S
> 12+ p
3 AC = 1.921
n T = 3.371 sec
Z B¢
2,
6] L L L 1 e
0 S 10 15 20 25
t(sec )
FIG. 4. Measured correlation function for log;ot = —4.01.

The inset is the deviation of the measured correlation function
from the best fit to Eq. (40). The deviation is in units of the am-
plitude of the decaying part, i.e., C(0)-C( ), and is expressed
in percent. The graph represents 600 averages of a 1000 chan-
nel correlation function at 20.5 msec/channel.
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lowest-order pure bend mode; this is actually a somewhat
delicate point requiring further discussion.

The lowest-order normal mode is the lowest-branch
solution of Eq. (38), or as we have pointed out in the
preceding section, Eq. (39) for the experiments reported
here. In the strong-anchoring limit (d, =0) Eq. (39) gives
g =1, i.e., the fundamental mode wave vector is q,=m/d;
in the weak-anchoring limit (d, =) g=¢;=0. Now
d,=mK;;/Wyd and K 3; diverges as the smectic- 4 phase
is approached; therefore it is not clear whether only the
lowest-order normal mode is probed throughout the
range of reduced temperature; furthermore, even if the
fundamental mode is the only contributor of scattered
photons it is not clear how much g, may vary within its
range 0=g, =7/d. The next higher mode is an odd
mode which we have not discussed here; however, we
have examined it theoretically and it is just the lowest-
branch solution of — tanwg/2=d,q, as in the static
theory [12], under the same assumptions used in deriving
Eq. (39). Thus if W, remained constant as K5, diverged
this mode would tend to g, =7 /d while the fundamental
mode goes to g, =0. For our experiments solutions of
Eq. (41a) give q** = /d,m/3d for the two scattering an-
gles studied; therefore it is clearly necessary to ask which
modes are detected and how their wave vectors may
change on approaching the smectic- 4 phase. Our experi-
ments answer these questions.

The differential light-scattering cross section for a

H. K. M. VITHANA, G. XU, AND D. L. JOHNSON
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where {2} is the appropriate selection rule [7] factor and
the factor in square brackets is a single slitlike diffraction
factor arising from interference due to the finite thickness
of the sample,
(|n (g I )'2 )

2kpT/V,

 Kyyq}[1+ sin’q,d /2q,d —x(sing,d /q,d ]
43)

for even modes [solutions of Eq. (38)] and
( |n (q” )|2>
2kgT/V,

K33qﬁ 1+ sin2q”d/2q”d-g—( sinq“d/q”a')2
e

(44)
for odd modes. ¥V is the scattering volume. Odd modes

are solutions of

—tan(qm/2)=d,q . (45)

The terms in the denominators of Eqgs. (43) and (44) in-
volving singd and sin2qd reflect the cut off of z-axis in-
tegrations. The third term in the denominator of Eq. (43)
is negligible since x <<1 for DHAOB. The relaxation
times for the pure bend normal modes probed here are
given by Eq. (20) with A =p =0 and x =0; they are

discrete bend mode of wave vector q is Y1
) il T:K ol (46)
2 sin(g P —gq,) 339
49 (|nigl?) [ (R}, @ _ ,
dQdw (gf* —q)d /2 where g, is the solution of Eq. (39) or (45) for the lowest-
2 M T v v T v M T T MR
10
bo = 5.32° a—a = 3.07°
[ O —o; = S. (Sample 2) in :
| Tc= 289.6188+0.0001 K Tc = 289.6070£0.0001 K ]
1L 4
10 ¢t
TN
O
(¥
)]
~—~ [ 1
~
O 4
10 |
A
_1 " aaal Loaaaal " A a aaaaal a i aal A i i
10 -7 -6 -5 —4 -3 -2
10 10 10 10 10 10

[(T-

Te)/Tcl

FIG. 5. Log-log graph of the relaxation time vs reduced temperature for the two scattering angles employed in the heterodyne ex-

periment. a;,=3.07°(5.32°) correspond to ¢ = /3d(w/d) where

d is the sample thickness. a;, and ¢°* are defined by the inset of

Fig. 2. The fact that 7(3.07°)=7(5.32°) throughout the range of reduced temperature probed to within experimental uncertainty is
strong evidence that both experiments probe only the lowest-order even normal mode (see text).
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5 e — — - S —
10 ¢ a;n= 3.07 ° Sample 2 ]
[ Tc = 289.6070%0.0001 K
1045" /O3= 0.82+0.03 E
R - B=8 ]
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s 10F
S ' 3
2
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< 4
= 101r 3
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FIG. 6. Log-log graph of AC ! (see text) vs reduced temperature with and without the background term, B /T, subtracted. AC ™!
is a measure of the inverse of the scattering intensity; it is obtained by fitting measured correlation functions (e.g., Figs. 3 and 4) to
Eq. (40). The solid lines are fits of AC ™! vs ¢ to Eq. (48a). The best-fit values of T, ps;, and AT, /B are given in the figure with their
standard errors. AT,./B is the ratio of the coefficients of the singular to the nonsingular parts of Eq. (48a) evaluated at 7T,. The
scattering angle for these data, a;,=3.07, is defined in Fig. 2.

10 oGn= 5.32° Sample 2 ]
[ Tc = 289.6188+0.0001 K |
104 ps=0.82£0.03 3
.*U.i) ® — B|: B ]
C ' 4
3 3L co—B=0 ;
£ 10 E
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ﬂll 10 ¢ 3
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FIG. 7. Log-log graph of AC ™! (see text) vs reduced temperature with and without the background term, B /T, subtracted. AC ™!
is a measure of the inverse of the scattering intensity; it is obtained by fitting measured correlation functions (e.g., Figs. 3 and 4) to
Eq. (40). The solid lines are fits of AC ! vs  to Eq. (48a). The best-fit values of T, p;, and AT./B are given in the figure with their
standard errors. AT, /B is the ratio of the coefficient of the singular to the nonsingular part of Eq. (48a) evaluated at T,. The scatter-
ing angle for these data, a;,=5.32°, is defined in Fig. 2.
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order even or odd mode, respectively.

The first evidence that our experiments probe only a
single bend mode is that the single exponential form of
Eq. (40) gives an excellent fit to all of the data at all tem-
peratures and at both scattering angles; examples were
given in Figs. 3 and 4. Secondly both experiments, i.e.,
both scattering angles, qﬁp‘=17'/3d and m/d, yield the
same relaxation times within experimental uncertainties
over the entire range of reduced temperatures as shown
in Fig. 5. Clearly the single slitlike diffraction factor in
Eq. (42) significantly overlaps only one normal mode and
it is the same normal mode for both experiments; further-
more, given the qi’"‘ values for these experiments, this
must be the lowest-order normal mode, i.e., the lowest-
branch solution of Eq. (39). Finally, that the wave vector
of this mode is q ~1/d, i.e., that we are in the strong-
anchoring regime, can also be deduced from Fig. 5. If
strong anchoring were not present at low temperatures,
e.g., if d,=wKy;/W,d increases with K3, an entirely
reasonable possibility, the experiment done at qﬁ’p‘ =m/d
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should begin to detect the first harmonic as the
nematic—smectic- 4 transition is approached. Then, even
if the ratio of first harmonic to fundamental scattering
remained small enough that the single exponential form
of Eq. (40) continued to give good fits, one would expect
that the fitted values of 7 from the ¢{P" = /d experiment
would fall below those of the q;l’p‘ =1/3d experiment as
the transition is approached. Figure 5 shows that this is
certainly not the case. We conclude that both experi-
ments probe the lowest-order normal mode and that the
wave vector of this mode is temperature independent and
very near the strong-anchoring (d, =0) solution of Eq.
(39), namely, g, =7 /d.

Since g =m/d is the only mode probed, the mean-
square normal-mode amplitude [Eq. (43)] appropriate for
the scattering cross section [Eq. (42)] is

2k T
(In(gy=m/d)?)=—"T="——, (47)
VSCK33(7T/d)

TABLE 1. Results of fitting Eq. (48a) to the heterodyne light-scattering amplitude data as defined in
Egs. (48b) and (40). «;,=3.07°(5.32°) is the internal scattering angle (see Fig. 2 inset) corresponding to

opt —

q)

w/3d(m/d); n is the number of data points removed from the data set to implement gap expan-

sion (GE), see text. fpin(n)=[Tmin(n)—T.(n)]/T.(n) where Tp,(n) is the temperature of the data
point nearest the N-Sm- 4 transition after n are removed, T,(n) is the average of the fitted value of T,

1

over the entire range of range shrinking (RS), ¢«

<tmax <. Where t4%) are the lower (upper) end of

the reduced-temperature range spanned by RS and t,,=[Tm.— 1.(n)]/T.(n). For a;,=3.07°,
logot bax = —2.45, logjoth..=—3.5, T;=289.607 K; whereas for a;,=5.32°, logot¥., =—2.60,
logothax = — 3.5, To=289.6187 K. The uncertainties in the fourth and sixth columns include not only
the systematic variations of the fit parameters T,.(n) and p; on RS but also their individual error bars.
Systematic variations are in all cases comparable with parameter error bars which increase on RS. RS
much deeper than ¢/, results in unacceptably large error bars and systematic variations.

Qi (deg) n logyof i [T.(n)—T,] (mK) X ps
3.07 0 —6.63 0.01 0.70 0.820
+0.04 +0.1 +0.03
1 —6.24 0.025 0.70 0.820
+0.04 +0.1 +0.03
2 —5.95 0.07 0.65 0.808
+0.07 +0.05 +0.03
3 —5.88 0.085 0.65 0.805
+0.08 +0.05 +0.03
4 —5.64 0.16 0.6 0.79
+0.09 +0.1 +0.03
5 —5.48 0.07 0.6 0.81
+0.16 +0.1 +0.04
5.32 0 —6.40 0.095 0.95 0.82
+0.07 +0.1 +0.03
1 —6.31 0.107 0.95 0.82
+0.07 +0.1 +0.03
2 —6.08 0.112 1.0 0.82
+0.08 +0.1 +0.04
3 —6.03 0.181 1.0 0.80
+0.06 +0.1 +0.04
4 —5.94 0.186 0.95 0.795
+0.08 +0.1 +0.05
5 —5.84 0.185 0.95 0.795
+0.08 +0.1 +0.05
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therefore, the temperature dependence of the coefficient
of the exponential term in the heterodyne correlation
function [Eq. (40)] is dominated by the temperature
dependence of the bend coefficient, K 3.

To test the hypothesis that K;; exhibits a simple
power-law divergence at the N —Sm- 4 transition we have
fit the data to

AC'=ar P+ B (48a)
T
where
ACT'=[C(0)—C(w)]"". (48b)

This form follows from the theoretical results of Jahnig
and Brochard [13] who predict on the basis of de
Gennes’s model [1]

K3 =K;,+8K; , (49a)
where
kgTq (2)
8K, = —Wgn (49b)
and
=&t REE (49¢)

They further suggest that three-dimensional (3D) XY crit-
ical exponents apply, as expected in a naive treatment of
the de Gennes model [1] of the N-Sm-A transition
where coupling between the director and smectic order
parameter is not treated exactly.

The results of fitting both data sets to Eq. (48) are
shown in Figs. 6 and 7. The fits are excellent (y*>~1) and
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the critical exponents are the same within experimental
uncertainty, p;=0.81510.03, for both scattering angles.
We have analyzed these data in detail; the above error
estimates include variations resulting from gap expansion
(GE) and subsequent range shrinking (RS). GE means re-
moving data point by point from the low-temperature
end of the data set; we subsequently apply RS to the re-
sulting data set. RS means removing data point by point
from the high-temperature end of a given data set (after
GE) and fitting the resulting data set to Eq. (48). The
outcome of this data analysis is summarized in Table 1.

B. Fréedericksz-transition experiments

The experimental geometry of the Fréedericksz-
transition (FT) experiments is shown in Fig. 8. The pho-
todiode detects the birefringence fringes that appear as
the magnetic field is very slowly ramped through the crit-
ical field H,. The photomultiplier tube detects light scat-
tered from mode-2 director fluctuations with
q,/9,~ 1073, i.e., nearly pure twist fluctuations; allowing
us to monitor transition-temperature drifts (~1
mK/day) on a daily basis and to correct the temperature
data correspondingly.

Due to finite magnetic-field ramp rates (~2.5 G/min)
the onset and disappearance of fringes on increasing
[H,(1)] and decreasing [H.(l)] field does not occur at
the same field. H.(1)—H_,(l)<40 G throughout the
range of temperatures probed and decreased upon ap-
proaching the N -Sm- A4 transition. We defined the mea-
sured critical field as the average of these, i.e.,
H . =1/2[H.(1)+H(l)]. Estimates of uncertainty in
this H, came from direct measurements of its reproduci-

2 —_— 5
3 I 6
1 n - . ﬁ 7
-— /
I
8
1 -He-Nelaser
2 - Polarizer Hi1A
3,6 -Lens -0
4 - Sample
5,10 - Analyzer 10
7 - Photodiode Top View
8 - XY-Recorder 11
9 - Pinhole (250 um)
11 - Line Filter
12 - Photomultiplier Tube 12

FIG. 8. Geometry of the bend Fréedericksz-transition experiment (transmitted light, 5—7 leg) and the nearly pure twist-mode auxi-
liary light-scattering experiment used to measure 7, drift with time (9-12 leg). For the FT experiment the polarizers (2 and 5) are
crossed and at 45° to the plane of the figure. For the LS experiment polarizer 2 (10) is perpendicular (parallel) to the plane of the
figure. The photomultiplier signal is delivered to a photon counting and autocorrelator system and the measured correlation function
is fitted to an appropriate homodyne correlation function to get the amplitude (arbitrary units) and relaxation time of the nearly pure
twist mode probed in this geometry. This auxiliary LS experiment is very similar to the one described in Ref. [4].
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bility well above Ty_gn 4(0g~=*2 G) and from esti-
mates of H, drifts due to temperature drifts (=50 uK),
oy =o0pdH,/dT, which gave the dominant contribution
very near Ty_gm 4-

The above estimates of oy and the simple power-law
form

HX= ATt "+B (50)

gave an excellent statistical explanation of the data as evi-
denced by x*~1 and the random appearance of devia-
tions of the data from the best-fit functions (not shown).
Our o estimates were objective; therefore y?~1 lends
validity to Eq. (50) and allows us to estimate parameter
uncertainties objectively. The results are shown in the
log-log graphs of Figs. 9 and 10 where we have converted
H? to K 5 using Eq. (52) below and x,, from the literature
(see Sec. IV below). From Egs. (49), we then have
A=(mkpq}/24x,d>)E) and B=(w/d)*K 3,/X, where A
and B are the coefficients in Eq. (50).

The simple power-law form is justified physically as
follows. As noted in Sec. II the Fréedericksz transition
occurs when A =gq. The relevant wave vector is, there-
fore, the lowest-branch solution of Eq. (36) with A =g,
namely,
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cot-7129—=deq . (51)
This is the same as Eq. (39) except now it is exact for all
values of the bulk and surface-dissipation coefficients, or
equivalently x and d,. This simplification illustrates the
well-known fact that the wave vector at which a static
thermodynamic instability occurs does not depend on dy-
namic properties. Thus Eq. (36) reduces, as required, to
the Rapini-Papoular [11] result when A —gq. Of course,
our conclusions in the preceding section still hold, name-
ly, gy=m/d (or g=1) since we are in the strong-
anchoring regime (d, =0). Hence we have

2
K33
Xa

H}=

c

K
d ) (52)

the usual bend-FT relationship; which, with Eq. (49),
justifies Eq. (50).

As seen in Figs. 9 and 10 the FT data do not extend as
close to T, as the light-scattering (LS) data; specifically
they terminate ~ 10 mK above T,. This limit of our data
occurs at the temperature below which the so-called
stripe instability [14] is present. Although the stripe in-
stability occurs above [15,16] the Fréedericksz field, H,,

—_3 T T v T -
104 Sample 1
— 4L i
10 | E
=
>
©
— =5
210ty 5o
X oo T T ]
| [ B=0 ]
M S
o 56 Tc = 289.7466+0.0001 K
o L o5 = 082940005 z
L A= 153+1 G2/K
107
-3 —4 -3 -2
10 10 10 10

[(T=T¢)/Tc]

FIG. 9. Log-log graph of the bend elastic constant K;; vs reduced temperature t=(T—7T,)/ T, (T, is the nematic—smectic- A
transition temperature) with and without the background, K, =(x,d?/ 7*)B, subtracted, i.e., with B =0 (upper curve) and B=K,
(lower curve). Sample 1 is not the same sample studied in the light-scattering experiments. K3;; was calculated from the measured
(fitted) Fréedericksz fields, H,, using Eq. (52) [Eq. (50)] and ), obtained from Ref. [17]. Therefore the solid lines are best fits of mea-
sured K ;; to a simple power law in reduced temperature using Eqgs. (50) and (52) as described in the text. The best-fit value of the H?
[Eq. (50)] background B found from this fit is given in the figure and corresponds to K3, =(3.49+0.07) X 10~ 7 dyn, which is a very
reasonable value. The best-fit values of the Eq. (50) critical exponent p;, the amplitude A, and the critical temperature T, are also
given in the figure. At t=2X 1072 this figure gives K33 =1.0X 107¢ dyn, which is within experimental uncertainty of the value ob-
tained by de Jeu and Claussen [J. Chem. Phys. 67, 3705 (1967)] at a similar reduced temperature using optical retardation vs field data
beyond the FT in splay geometry to measure K;; and K33 /K ;.



47 DYNAMICS OF THE LOWEST-ORDER BEND-TWIST DIRECTOR . . . 3451

it is very close to it and smears out the birefringence
fringes, making it impossible to objectively determine H,
with sufficient accuracy. Note that the background con-
tribution relative to the singular part is greater for the LS
than for the FT data. This is due to the fact that focusing
the laser beam to b ~ 100 um introduces uncertainty in g,
of the order 27 /b, thus bringing in contributions from
splay a;nd twist which only become negligible for
tsS107°.

We have extensively analyzed the FT data using both
the GE and RS procedures as with the LS data. Al-
though the FT data do not extend as close to T, as the LS
data their scatter is much less, resulting in a very
rigorous test of the acceptability of Eq. (50) as a parent
distribution function. The results of this analysis are
summarized in Table II.

It is of interest to compare T,(n) with T, derived from
the auxiliary light-scattering intensity data collected in
the T, drift experiments discussed briefly at the begin-
ning of this section. These scattering intensities were
linearly extrapolated to zero to determine T,; therefore
they could not estimate T, closer than ~1 mK, although
their scatter was considerably less than 1 mK. T, (n) for
both samples and all n values differs by less than 1 mK
from the values obtained from these auxiliary twist-mode

light-scattering experiments.

The most striking outcome of our data analysis is the
extreme stability of T,(n) against both range shrinking
and gap expansion in spite of the fact that the lowest-
temperature data point is ~10 mK above T,. RS of 0.75
decades and GE of ~0.5 decades leaves T.(n) un-
changed to within 0.1 mK for both samples. Extending
GE to ~1 decade (n=26,30) and applying 0.75 decades
of RS, which leaves <20 data points at ¢/, (see Table I
caption), results in <2 mK shift of T:(n ) from YT(O).

The stability of these fitted values of 7, against RS and
GE and their excellent agreement with the light-
scattering values, combined with the stability of fitted
values of the exponent p; in the fifth column of Table II,
provide strong empirical evidence supporting the simple
power-law dependence of H? on reduced temperature and
are rigorous confirmations of power-law behavior. We
conclude that p;=0.8251+0.008 is a conservative state-
ment about p; for DHAOB in the range
—4.5<log;ot < —2.0 as Table II demonstrates.

The success of the FT and LS experiments depended
on several factors. Submillikelvin temperature stability
(<50 uK) was achieved through the use of an ac bridge,
the heart of which is a seven-digit Gertsch ratio trans-
former (RT). The temperature coefficient of this cleverly

&3 ——————— :
_ q Sample 2 }
._4__ 4
10 4 3
T E
>
o I
=~ . =5
o 10 - <
ok o —B = (0.62+0.01)10° G
! e B = y
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> —6| Tc=289.8008+0.0002 K e ]
— 10 | p = 0.824+0.003 ‘ 3
[ A= 15.120.8 G2/K ]
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FIG. 10. Log-log graph of the bend elastic constant Kj; vs reduced temperature ¢t=(T—T,)/T,, where T_ is the

nematic—smectic- A transition temperature, with and without the background, K3, =(x,d?/ m*)B, subtracted, i.e., with B=0 (upper
curve) and B =K, (lower curve). Sample 2 is the same sample used in the LS experiments. K3;; was calculated from the measured
(fitted) FT fields, H,, using Eq. (52) [Eq. (50)] and ¥, from Ref. [17]. Therefore the solid lines are best fits of measured K;; to a simple
power law in reduced temperature using Egs. (50) and (52) as described in the text. The best-fit value of the H? [Eq. (50)] background
B found from this fit is given in the figure and corresponds to K3, =(3.42 +0.07)X 10”7 dyn in excellent agreement with the value
found for sample 1 (see Fig. 9 caption). The best-fit values of the Eq. (50) critical exponent p;, the amplitude A4, and the critical tem-
perature T, are also given in the figure. As for sample 1, there is good agreement with a literature value of K3; at t=2X 1072 (see
Fig. 9 caption).
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+— LS (am=3.07°) Sample 2
Tc = 289.6070+£0.0001 K
P 5= 0.82+0.03
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o~ LS (a;, = 5.32°) Sample 2]
Tc=289.6188+0.0001 K 7

Tc = 289.8008+0.0001 K
Q<= 0.824+0.003
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TABLE II. Results of fitting Eq. (50) to the Fréedericksz transition data for two samples of thickness
d =216 pm. Sample 1 is the same sample as used in the light-scattering experiment. See the Table I
caption for the definition of tpn(n), T.(n), Tmn(n), t¥.,, th., and T,. For both samples
log ot %,y = —2.00 and log;ot}.x = —2.75. For sample 1 (2) T,=289.7466 (289.8008). The discussion of
parameter uncertainties given in the Table I caption applies here as well.

Sample n log ot min(n) [T.(n)—T,] (mK) 03 x?
1 0 —4.43 0.00 0.828 1.0
+0.14 +0.005 +0.10
1 1 —4.40 0.10 0.827 0.90
+0.14 +0.005 +0.10
1 2 —4.37 0.07 0.827 0.90
+0.17 +0.005 +0.10
1 3 —4.33 0.05 0.827 0.85
+0.13 +0.005 +0.08
1 6 —4.24 —0.08 0.829 0.85
+0.20 +0.005 +0.08
1 7 —4.22 —0.10 0.830 0.85
+0.2 +0.005 +0.08
1 13 —4.02 —0.05 0.825 0.90
+0.4 +0.01 +0.1
1 26 —3.60 —1.10 0.830 0.9
+1.8 +0.015 +0.15
2 0 —4.57 0.00 0.824 0.9
+0.06 +0.003 +0.10
2 1 —4.54 0.02 0.824 0.9
+0.07 +0.003 +0.1
2 2 —4.47 0.02 0.823 0.95
+0.08 +0.003 +0.08
2 3 —4.45 0.08 0.822 0.97
+0.08 +0.003 +0.03
2 4 —4.42 0.12 0.821 0.97
+0.08 +0.003 +0.03
2 17 —4.01 —0.08 0.833 0.40
+0.5 +0.01 +0.05
2 30 —3.56 1.9 0.817 0.20

+2.5 +0.015 +0.05

] FIG. 11. Composite log-log
p:l,: 0.82+0.03 plot of the singular part of K3;
vs reduced temperature, includ-
E ing both LS and FT data. The
LS data have been scaled on the
vertical axis to match the FT
data in the overlap region.
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designed ac voltage divider is zero to first order because
of intrinsic internal cancellations. We performed oven
experiments which compare the output of RT’s inside
and outside the oven and could detect no difference in the
seventh digit for temperature differences far in excess of
those experienced in the laboratory. Our estimate of
~50 uK is an upper limit on temperature stability based
on the oven experiments. Window gradients were care-
fully studied [4] and are considerably less than 30 uK
across the beam diameter; beam heating was negligible
[4]. High-quality homeotropically aligned samples with
no optically observable defects and very low T, drift (~1
mK/day) were also essential as was the excellent repro-
ducibility of our measurements of H, as described above.
Indeed, the scatter of the ch data is unobservable on the
scale of the log-log plots of Figs. 9 and 10 in contrast
with the light-scattering data which are intrinsically lim-
ited by photon statistics to much higher levels of scatter
as shown in Figs. 6 and 7. The advantage of the hetero-
dyne experiments is that they can be extended extremely
close to T,, approximately two decades closer than the
FT data because the stripe phenomenon does not inter-
fere.

Combined, these two experiments provide the most
rigorous test to date of N—Sm- A4 criticality as character-
ized by power-law singularities. This is illustrated in Fig.
11, where we have plotted both FT and LS data. The LS
data have been scaled vertically by a constant factor to
agree with the FT data.

IV. DISCUSSION AND CONCLUSION

In Sec. II we derived the director normal-mode spec-
trum of a homeotropically aligned nematic liquid crystal
from the Erickson-Leslie-Parodi hydrodynamic theory
augmented to include finite-strength surface anchoring of
the director and rotational and shear-flow surface-
dissipation contributions to the orientational part of the
entropy production. We restricted our attention to the
bend-twist mode (mode 2) and included the effect of a
symmetry breaking magnetic field in the bend
Fréedericksz geometry, but only the case where the field
is in the plane of the fluctuation. Generalization to arbi-
trary field orientation (H.f,) is straightforward and will
be presented elsewhere [10]. Generalization to the bend-
splay geometry is also straightforward but much more
tedious and we have no plans at present to study it. We
find no surface modes but do find additive nonsinusoidal
(coshkz) contributions to the bulk modes. By comparing
these theoretical results with heterodyne light-scattering
relaxation-time experiments we were able to establish
that these experiments probe only the lowest-order direc-
tor mode and that the wave vector of this mode is tem-
perature independent and very close to w/d, i.e., that
strong anchoring applies throughout the range of re-
duced temperature of our experiments. Therefore, for
our samples, we concluded that surface and bulk dissipa-
tion and finite anchoring do not affect the normal-mode
spectrum, which is therefore composed of simple
sinusoidal modes quantized in units of 7/d in the 1,
direction. This further permitted us to conclude that the
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usual Fréedericksz transition relation, Eq. (52), applies.

Since light scattering at large scattering angle does not
have the difficulties vis-a-vis the question of normal-mode
structure that our experiment has it is useful to question
why we have chosen to study the lowest-order mode.
First of all it is the most sensitive probe of the effect of
surface anchoring and dissipation, which are interesting
in their own right; secondly it allows us to make direct
connection and comparison with another important class
of experiments, the FT experiments; and finally it does
not have the problem of crossover into the nonhydro-
dynamic regime on approach to T, suffered by high-g
modes, until, of course, the smectic correlation length §”
becomes comparable with the film thickness, d =216 um,
at which point one also expects the onset of finite-size
and surface effects on the N-Sm-A transition. For the
latter reason it is important to know whether £, becomes
~d close to T, in our light-scattering experiments; a
point we return to after a discussion of the way we have
determined §, from our FT measurements.

Equations (49), (50), and (52) allow us to write

o 24 Xa

[

4, (53)

T kg | 4o

where §f|’ is defined in Eq. (49c) and is the so-called bare
correlation length or correlation-length amplitude. All of
the parameters on the right-hand side of Eq. (53) are
known quite accurately. Specifically y,=1.1X 1077 emu
[17], d =216+2 um, and ¢,=0.234 (A)~'=27/I where |
is the extended molecular length, and 4=15.2 G> K™!
from our present results. This leads to §‘?=7.9 A, which
is slightly less than one-third of a molecular length; of
course, &, has no direct physical meaning on the molecu-
lar scale of lengths. This estimate of the bare correlation
length is quite accurate (£0.5 A) but its physical mean-
ing is in some doubt because Eq. (53) relies on Eq. (49b),
which is a result of a mean-field calculation by Jihnig and
Brochard that may not be applicable in the critical re-
gime. If we use this value of §(”’ to calculate the smectic
correlation length at the low end of the reduced-
temperature range spanned by our light-scattering data
we find §”(3X 1077)=190 pm, which is very close to the
film thickness d =216 um. We stress that this is an enor-
mous correlation length, possibly among the largest ever
measured near a phase transition of any kind, if indeed
the Jahnig-Brochard calculation is correct as to order of
magnitude of §f|) which, as we shall show, it probably is.
We note that this correlation length is derived from an
elastic property, not from x-ray scattering; the latter
detects the growth of smectic fluctuations. In this regard
we would comment that our bare length and critical ex-
ponent for §; are comparable with those found by x-ray
scattering for several nonpolar materials, however, x-ray
experiments are resolution limited to ¢ 23X 107>, two or-
ders of magnitude further from T, than our experiments.
Recent results on a mixture of DHAOB (C¢) and 10% of
its neighboring homolog, di-heptylazoxybenzene (C,),
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yield a smaller critical exponent [18] (v,=0.75%+0.03)
and bare length (§ﬁ =7.2 A, no uncertainties given), a
rather surprising result in light of the good agreement be-
tween elastic constant and x-ray scattering measurements
of §, found for a number of materials by Sprunt, Solo-
mon, and Litster [19]. The results of Ref. [19] strongly
suggest that our calculated &, should be a good measure
of the extent of smectic fluctuations in the direction of fi,.
Therefore the disagreement between our results and the
x-ray results on the C¢(90% )-C;(10% ) mixture is all the
more puzzling. Recent birefringence measurements [20]
on the alkylazoxybenzene series have located a tricritical
N-Sm-A point (TCP) at ~C,(50%)-C3(50%). The
nematic range at the tricritical point, measured by
tia=(Tyy—Ty_sma)/Tny, is  t5=0.023 whereas
t;4(Cg)~1; 4(C(90%)-C5(10%))~0.115. Hence both
C¢ and C¢(90%)-C,(10%) are very far, and equally far,
from the TCP by this measure, deepening the mystery
about their different £’s. We do not understand this
clear-cut disagreement [21]. It flies in the face of the ex-
tensive studies of Ref. [19] and of our current level of un-
derstanding of N-Sm-4A tricriticality. If the observed
difference in & I is material related, the chemical
difference, or physicochemical difference of importance is
not reflected in the nematic range parameter #; ,.

There is another puzzling feature of these results. Our
own earlier FT studies [15] of three nonpolar systems
with t; , ~0.06 found a crossover of p; from values com-
parable to that reported here to much lower values, close
to the three-dimensional (3D) XY prediction (~2). Add-
ing a very large and negative correction to scaling term to
the power law resulted in excellent fits over the entire
range of reduced temperature probed, critical tempera-
tures very close (~1 mK) to those obtained from the
auxiliary light-scattering experiments, and exponents
p3=0.671+0.02 for all three materials. It is difficult to
reconcile such behavior with that reported here for
DHAOB, p;=0.825%+0.008. Crossover from tricritical
to critical is superficially inconsistent with the expecta-
tion that tricritical exponents are smaller than critical ex-
ponents; however, exponent crossover need not necessari-
ly be monotonic. If p;=0.825 represents some inter-
mediate crossover regime, and p; is near a peak, it is curi-
ous that this regime is more stretched out for DHAOB,
with ¢; ,=0.115, than for the other three materials for
which #;,~0.06, and which therefore are presumably
closer to a TCP than DHAOB. In other words, this ex-
planation would require the asymptotic critical regime of
the three materials situated closer to the TCP, as mea-
sured by ¢;,, to be much broader than for DHAOB
which is much further from the TCP; not impossible but
unusual by naive considerations. We cannot convincing-
ly explain the physical origin of this difference of
behavior, but it is important to note that there was
another experimental feature of the previous work [15]
that we could not then and cannot now satisfactorily ex-
plain. All three of the materials exhibited a very small
but measurable dependence of T, on applied magnetic
field, T.(H ); it was measured by monitoring the onset of
light scattering on warming through 7, in the presence of

a bend Fréedericksz geometry field. Although 7, only in-
creased by a few mK at the largest Fréedericksz fields
employed it was necessary to make corrections to the FT
temperature data in order to gain agreement between the
fitted T,’s and the auxiliary light-scattering T,’s.

To learn whether the T.(H) and p; crossover phenom-
ena are related we performed the heterodyne light-
scattering experiment on one of the three materials stud-
ied by FT earlier and which exhibited T,(H) and p,
crossover, namely, hexyloxythiobenzoate (609). We
found p;=0.8441+0.035 and no crossover to the lower
value (~2%) even though the data extended to
t=6XxX10"", nearly two decades closer to T, than the ear-
lier FT data [22]. Furthermore, this 609 sample did not
exhibit the T,(H) phenomenon, suggesting that T,.(H)
and p; crossover are related experimental artifacts. We
now interpret the earlier data [15] differently and place
more trust in the values obtained from the simple power-
law fits reported there even though the y? values were
quite large as a result of the high precision of the FT ex-
periments. Our best estimates are p;=0.82+0.04 for all
three of these materials, 609, octyloxythiolbenzoate
(8S5), and nonylthiolbenzoate (9S5); consistent with x-ray
scattering measurements [23,24] which, however, do not
exist for 9S5. It therefore now appears that p;~0.82 for
nonpolar materials with wide nematic ranges. Finally we
can say that for DHAOB p;=0.825+0.008 in the range
—4.5<loggt < —2.0 and that any deviations from pure
power-law behavior are small indeed; furthermore, any
crossover to another regime in the range probed by our
heterodyne experiments ( —6.5<log ot © —3.0) must in-
volve changes in p; smaller than approximately +0.03.

Earlier light-scattering studies of twist-mode fluctua-
tions of DHAOB gave p,=0.671+0.02, in a comparable
range of reduced temperatures (—6.5<log;ot < —3.0),
allowing us to extract the anisotropy of the thermo-
dynamic correlation-length exponents by comparison
with our current work. This anisotropy is given by
(p3—p,)/2=0.078 which is rather small by comparison
with narrower-nematic-range nonpolar materials, con-
sistent with earlier findings and contrary to all theoretical
results. We believe this to be a rigorous test of
correlation-length exponent anisotropy.

Intriguing questions remain related to the curious
T.(H) phenomenon and its companion p; crossover ob-
served in three nonpolar materials but not in DHAOB.
We do not understand this but one clue is that it does not
always happen as our experience with 609 proves. The
agreement between our LS and FT results for DHAOB
suggests that these phenomena are not due to the soften-
ing of rigidly anchored bend modes as a result of the ap-
plied field. We do not believe that sample impurities are
responsible for the T.(H) and p; crossover phenomena
because of the very similar behavior (identical correction
to scaling terms) exhibited by the three quite different
materials. The only remaining possibility appears to be
that 7.(H) and p; crossover are related to surface-
anchoring or surface-ordering phenomena. Finally, we
believe that a related question is raised by the experimen-
tal fact that for DHAOB the quantity d,=7K;/Wyd
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does not appear to diverge. We note that d, 2 0.1 would
lead to observable (but unobserved) weak anchoring near
T.. Typical values of W, would give d,~10 at
t~3X1077. It seems clear that W, must increase to
values much larger than those typically observed in nor-
mal nematics liquid crystals away from smectic transi-

tions [25]. Again surface phenomena appear to be crucial

but not understood. We are currently pursuing these
questions.
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